Formulae, that you need to know:

Area of a circle
$$Area = \pi r^2$$

Circumference of a circle
 $C = 2\pi r$ or πd

Volume of a prism
Cross section area \times height (or length) $= A \times l$

Volume of a cylinder
 $V = \pi r^2 h$

Curved surface area of a cylinder
 $A = 2\pi rh$

Area of parallelogram
 $\bigwedge h \\ \checkmark$

Area of parallelogram
 $\bigwedge h \\ \checkmark$

Area of rhombus or kite
 $\bigwedge h \\ \checkmark$

Area of rhombus or kite
 $\bigwedge h \\ \checkmark$

Area of a triangle
 $\bigwedge h \\ \land = \frac{1}{2}bh$ ($= \frac{1}{2}bh$ ($=\frac{1}{2}base x height$)

 $\longleftarrow b \longrightarrow$

Sectors and arc lengths

Trigonometry

SOH – CAH - TOA

$$\sin A = \frac{opposite}{hypotenuse}$$

 $\cos A = \frac{adjacent}{hypotenuse}$

$$\tan A = \frac{opposite}{adjacent}$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$ $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ Area of a triangle $A = \frac{1}{2} ab \sin C$ Related Angles $\sin(-A) = -\sin(A)$ $\cos(-A) = \cos A$ $\sin(90 - A) = \cos A$ $\cos(90 - A) = \sin A$ $\sin(180 - A) = \sin A$ $\cos(180 - A) = -\cos A$ Sin-cos-tan formulae $\sin^2 A + \cos^2 A = 1$ $\frac{\sin A}{\cos A} = \tan A$ Pythagoras Theorem $a^2 = b^2 + c^2$

Algebra

The Quadratic formula
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Recurrence relation:

$$u_{n+1} = mu_n + c$$

Limit formula:

if
$$|m| < 1$$
 $(-1 < m < 1)$ $L = \frac{c}{1-m}$

Rules of indices

$$a^{m} \times a^{n} = a^{m+n} \qquad a^{m} \div a^{n} = a^{m-n} \qquad \left(a^{m}\right)^{n} = a^{mn}$$
$$a^{-n} = \frac{1}{a^{n}} \qquad a^{\frac{p}{q}} = \sqrt[q]{a^{p}} = \left(\sqrt[q]{a}\right)^{p} \qquad a^{-\frac{p}{q}} = \frac{1}{\sqrt[q]{a^{p}}} = \frac{1}{\left(\sqrt[q]{a}\right)^{p}}$$
$$a^{0} = 1 \qquad a^{1} = a$$

Rules of Surds

$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$
 $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Rules of Logarithms

 $y = \log_a x \quad \Leftrightarrow \quad x = a^y$

Special Logarithms

 $\log_a a = 1 \qquad \qquad \log_a 1 = 0$

Percentage increase, decrease, change etc,

% change =
$$\frac{actual \ change}{original \ value} \times 100$$

Straight Line formulae

Distance formula	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - x_1)^2}$	$(-y_1)^2$	(Pythagoras)
Mid-point formula	$=\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$		(simple average)
Gradient formula	$m = \frac{y_2 - y_1}{x_2 - x_1}$		(rise over run)
Equation of a line with gradient m passing through point (a, b)		y-b=	=m(x-a)
Equation of a line in normal form:		y = mx + c	
in which case, m is gradient and c is the y-intercept			
Equation of a line with integer coefficients.		ax+b	y + c = 0
Product of gradients of perpendicular lines:		$m_1 \times m_1$	$n_2 = -1$
Gradient of a line perpendicular			
to a line of gradient m		gradie	$ent = -\frac{1}{m}$
Angle θ between a line of gradient <i>m</i> and the positive direction of the <i>x</i> -axis is related:		m = ta $\theta = ta$	$\sin heta$ $\mathrm{n}^{-1}(m)$
Equation of line parallel to <i>x</i> -axis passing through $(0, k)$		y = k	
Equation of line parallel to <i>y</i> -axis passing through $(k, 0)$		x = k	

Calculus

Differentiation	$f(x) = x^n$	$f'(x) = nx^{n-1}$
	f(x) = kx	f'(x) = k
	f(x) = k	f'(x) = 0
Integration	$f'(x) = x^n$	$f\left(x\right) = \frac{x^{n+1}}{n+1}$
	f'(x) = kx	$f\left(x\right) = \frac{kx^2}{2}$

$$f'(x) = k \qquad \qquad f(x) = kx$$

Area between a curve y = f(x), the lines x = a, x = b and the *x*-axis

$$A = \int_{a}^{b} f(x) dx = \left[F(x) \right]_{a}^{b} = F(b) - F(a) \quad \text{where} \quad F'(x) = f(x)$$

Area between the curves y = f(x) and y = g(x), where y = g(x) is the top curve on the graph.

$$A = \int_{a}^{b} g(x) - f(x) dx$$

where *a* and *b* are the *x*-coordinates of the points of intersection of y = f(x) and y = g(x)

Extra formulae you should know

 $\sin^{2}\theta + \cos^{2}\theta = 1$ $\tan^{2}\theta + 1 = \sec^{2}\theta$ (divide by $\cos^{2}\theta \rightarrow \tan^{2}\theta + 1 = \sec^{2}\theta$) $1 + \cot^{2}\theta = \csc^{2}\theta$ (divide by $\sin^{2}\theta \rightarrow 1 + \cot^{2}\theta = \csc^{2}\theta$)

 $\sin A \pm B = \sin A \cos B \pm \cos A \sin B$ $\cos A \pm B = \cos A \cos B \mp \sin A \sin B$

 $\sin 2A = 2\sin A \cos A$ $\cos 2A = \cos^2 A - \sin^2 A$ $\cos 2A = 2\cos^2 A - 1$

 $\cos 2A = 1 - 2\sin^2 A$

Wave Equation

 $R\cos x - \alpha = R\cos x \cos \alpha + R\sin x \sin \alpha$

Compare coefficients to obtain:

 $R\cos\alpha = \dots$ $R\sin\alpha = \dots$

Square and add to get:

$$R^{2} \cos^{2} \alpha + \sin^{2} \alpha = \dots^{2} + \dots^{2}$$

 $R = \sqrt{\dots^{2} + \dots^{2}}$

2

Divide to get:

$R\sin\alpha$	 \rightarrow	$\tan \alpha =$	
$\overline{R\cos\alpha}$	 \neg	$\tan \alpha =$	

All formulae from Higher.